封装fastAPI openAI接口规范
This commit is contained in:
45
.dockerignore
Normal file
45
.dockerignore
Normal file
@@ -0,0 +1,45 @@
|
||||
# Git
|
||||
.git
|
||||
.gitignore
|
||||
|
||||
# Python
|
||||
__pycache__/
|
||||
*.pyc
|
||||
*.pyo
|
||||
*.pyd
|
||||
.Python
|
||||
env/
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
.tox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.log
|
||||
.git
|
||||
.mypy_cache
|
||||
.pytest_cache
|
||||
.hypothesis
|
||||
|
||||
# IDE
|
||||
.vscode/
|
||||
.idea/
|
||||
*.swp
|
||||
*.swo
|
||||
*~
|
||||
|
||||
# OS
|
||||
.DS_Store
|
||||
.DS_Store?
|
||||
._*
|
||||
.Spotlight-V100
|
||||
.Trashes
|
||||
ehthumbs.db
|
||||
Thumbs.db
|
||||
|
||||
# Project specific
|
||||
*.md
|
||||
!README.md
|
||||
31
Dockerfile
Normal file
31
Dockerfile
Normal file
@@ -0,0 +1,31 @@
|
||||
# 使用Python 3.10作为基础镜像
|
||||
FROM python:3.12-slim
|
||||
|
||||
# 设置工作目录
|
||||
WORKDIR /app
|
||||
|
||||
# 设置环境变量
|
||||
ENV PYTHONPATH=/app
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
|
||||
# 安装系统依赖
|
||||
RUN apt-get update && apt-get install -y \
|
||||
gcc \
|
||||
g++ \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# 复制项目文件
|
||||
COPY pyproject.toml ./
|
||||
COPY fastapi_server/requirements.txt ./fastapi_server/
|
||||
COPY lang_agent/ ./lang_agent/
|
||||
COPY fastapi_server/ ./fastapi_server/
|
||||
|
||||
# 安装Python依赖
|
||||
RUN pip install --no-cache-dir -r fastapi_server/requirements.txt
|
||||
RUN pip install --no-cache-dir -e .
|
||||
|
||||
# 暴露端口
|
||||
EXPOSE 8488
|
||||
|
||||
# 启动命令
|
||||
CMD ["python", "fastapi_server/server.py"]
|
||||
25
docker-compose.yml
Normal file
25
docker-compose.yml
Normal file
@@ -0,0 +1,25 @@
|
||||
version: '3.8'
|
||||
|
||||
services:
|
||||
lang-agent-api:
|
||||
build: .
|
||||
container_name: lang-agent-api
|
||||
ports:
|
||||
- "8488:8488"
|
||||
env_file:
|
||||
- ./.env
|
||||
environment:
|
||||
- PYTHONPATH=/app
|
||||
- PYTHONUNBUFFERED=1
|
||||
- RAG_FOLDER_PATH=/app/assets/xiaozhan_emb
|
||||
volumes:
|
||||
- ./configs:/app/configs
|
||||
- ./scripts:/app/scripts
|
||||
- ./assets:/app/assets
|
||||
restart: unless-stopped
|
||||
healthcheck:
|
||||
test: ["CMD", "python", "-c", "import urllib.request; urllib.request.urlopen('http://localhost:8488/health')"]
|
||||
interval: 30s
|
||||
timeout: 10s
|
||||
retries: 3
|
||||
start_period: 40s
|
||||
20
fastapi_server/Dockerfile.api
Normal file
20
fastapi_server/Dockerfile.api
Normal file
@@ -0,0 +1,20 @@
|
||||
# 使用Python 3.9作为基础镜像
|
||||
FROM python:3.9-slim
|
||||
|
||||
# 设置工作目录
|
||||
WORKDIR /app
|
||||
|
||||
# 复制requirements文件
|
||||
COPY requirements.txt .
|
||||
|
||||
# 安装Python依赖
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
# 复制项目文件
|
||||
COPY . .
|
||||
|
||||
# 暴露端口
|
||||
EXPOSE 8488
|
||||
|
||||
# 启动命令
|
||||
CMD ["python", "server.py"]
|
||||
220
fastapi_server/OpenAI_API_README.md
Normal file
220
fastapi_server/OpenAI_API_README.md
Normal file
@@ -0,0 +1,220 @@
|
||||
# Lang Agent OpenAI 兼容API
|
||||
|
||||
这是一个符合OpenAI接口规范的聊天API,允许用户使用与OpenAI API相同的方式访问您的Lang Agent服务。
|
||||
|
||||
## 快速开始
|
||||
|
||||
### 1. 启动服务器
|
||||
|
||||
```bash
|
||||
cd /path/to/lang-agent/fastapi_server
|
||||
python server.py
|
||||
```
|
||||
|
||||
服务器将在 `http://localhost:8488` 上启动。
|
||||
|
||||
### 2. 使用API
|
||||
|
||||
#### 使用curl命令
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:8488/v1/chat/completions" \
|
||||
-H "Authorization: Bearer 123tangledup-ai" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "qwen-plus",
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "你是谁?"
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
#### 使用Python requests
|
||||
|
||||
```python
|
||||
import requests
|
||||
|
||||
API_BASE_URL = "http://localhost:8488"
|
||||
API_KEY = "123tangledup-ai"
|
||||
|
||||
headers = {
|
||||
"Authorization": f"Bearer {API_KEY}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
|
||||
data = {
|
||||
"model": "qwen-plus",
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "你是谁?"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
response = requests.post(f"{API_BASE_URL}/v1/chat/completions", headers=headers, json=data)
|
||||
print(response.json())
|
||||
```
|
||||
|
||||
#### 使用OpenAI Python库
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
client = OpenAI(
|
||||
api_key="123tangledup-ai",
|
||||
base_url="http://localhost:8488/v1"
|
||||
)
|
||||
|
||||
response = client.chat.completions.create(
|
||||
model="qwen-plus",
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "你是谁?"}
|
||||
]
|
||||
)
|
||||
|
||||
print(response.choices[0].message.content)
|
||||
```
|
||||
|
||||
## API 端点
|
||||
|
||||
### 1. 聊天完成 `/v1/chat/completions`
|
||||
|
||||
与OpenAI的chat completions API完全兼容。
|
||||
|
||||
**请求参数:**
|
||||
|
||||
| 参数 | 类型 | 必需 | 默认值 | 描述 |
|
||||
|------|------|------|--------|------|
|
||||
| model | string | 是 | - | 模型名称 |
|
||||
| messages | array | 是 | - | 消息列表 |
|
||||
| temperature | number | 否 | 0.7 | 采样温度 |
|
||||
| max_tokens | integer | 否 | 500 | 最大生成token数 |
|
||||
| stream | boolean | 否 | false | 是否流式返回 |
|
||||
| thread_id | integer | 否 | 3 | 线程ID,用于多轮对话 |
|
||||
|
||||
**响应格式:**
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "chatcmpl-abc123",
|
||||
"object": "chat.completion",
|
||||
"created": 1677652288,
|
||||
"model": "qwen-plus",
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": "您好!我是一个AI助手..."
|
||||
},
|
||||
"finish_reason": "stop"
|
||||
}
|
||||
],
|
||||
"usage": {
|
||||
"prompt_tokens": 56,
|
||||
"completion_tokens": 31,
|
||||
"total_tokens": 87
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 2. 健康检查 `/health`
|
||||
|
||||
检查API服务状态。
|
||||
|
||||
**请求:**
|
||||
```bash
|
||||
GET /health
|
||||
```
|
||||
|
||||
**响应:**
|
||||
```json
|
||||
{
|
||||
"status": "healthy"
|
||||
}
|
||||
```
|
||||
|
||||
### 3. API信息 `/`
|
||||
|
||||
获取API基本信息。
|
||||
|
||||
**请求:**
|
||||
```bash
|
||||
GET /
|
||||
```
|
||||
|
||||
**响应:**
|
||||
```json
|
||||
{
|
||||
"message": "Lang Agent Chat API",
|
||||
"version": "1.0.0",
|
||||
"description": "使用OpenAI格式调用pipeline.invoke的聊天API",
|
||||
"authentication": "Bearer Token (API Key)",
|
||||
"endpoints": {
|
||||
"/v1/chat/completions": "POST - 聊天完成接口,兼容OpenAI格式,需要API密钥验证",
|
||||
"/": "GET - API信息",
|
||||
"/health": "GET - 健康检查接口"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## 认证
|
||||
|
||||
API使用Bearer Token认证。默认API密钥为 `123tangledup-ai`。
|
||||
|
||||
在请求头中包含:
|
||||
```
|
||||
Authorization: Bearer 123tangledup-ai
|
||||
```
|
||||
|
||||
## 测试脚本
|
||||
|
||||
项目提供了两个测试脚本:
|
||||
|
||||
1. **Bash脚本** (`test_openai_api.sh`) - 使用curl命令测试API
|
||||
2. **Python脚本** (`test_openai_api.py`) - 使用Python requests库测试API
|
||||
|
||||
运行测试脚本:
|
||||
|
||||
```bash
|
||||
# 运行Bash测试脚本
|
||||
chmod +x test_openai_api.sh
|
||||
./test_openai_api.sh
|
||||
|
||||
# 运行Python测试脚本
|
||||
python test_openai_api.py
|
||||
```
|
||||
|
||||
## 与OpenAI API的兼容性
|
||||
|
||||
此API完全兼容OpenAI的chat completions API,您可以:
|
||||
|
||||
1. 使用任何支持OpenAI API的客户端库
|
||||
2. 将base_url更改为`http://localhost:8488/v1`
|
||||
3. 使用提供的API密钥进行认证
|
||||
|
||||
## 注意事项
|
||||
|
||||
1. 确保服务器正在运行且可访问
|
||||
2. 流式响应(stream=true)目前可能不完全支持
|
||||
3. 模型参数(model)主要用于标识,实际使用的模型由服务器配置决定
|
||||
4. 多轮对话使用thread_id参数来维护上下文
|
||||
|
||||
## 故障排除
|
||||
|
||||
1. **连接错误**: 确保服务器正在运行,检查URL和端口是否正确
|
||||
2. **认证错误**: 检查API密钥是否正确设置
|
||||
3. **请求格式错误**: 确保请求体是有效的JSON格式,包含所有必需字段
|
||||
179
fastapi_server/README.md
Normal file
179
fastapi_server/README.md
Normal file
@@ -0,0 +1,179 @@
|
||||
# Lang Agent Chat API
|
||||
|
||||
这是一个基于FastAPI的聊天API服务,使用OpenAI格式的请求来调用pipeline.invoke方法进行聊天。
|
||||
|
||||
## 功能特点
|
||||
|
||||
- 兼容OpenAI API格式的聊天接口
|
||||
- 支持多轮对话(通过thread_id)
|
||||
- 使用qwen-flash模型
|
||||
- 支持流式和非流式响应
|
||||
- 提供健康检查接口
|
||||
|
||||
## 安装依赖
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## 环境变量
|
||||
|
||||
确保设置以下环境变量:
|
||||
|
||||
```bash
|
||||
export ALI_API_KEY="your_ali_api_key"
|
||||
```
|
||||
|
||||
## 运行服务
|
||||
|
||||
### 方法1:使用启动脚本
|
||||
|
||||
```bash
|
||||
./start_server.sh
|
||||
```
|
||||
|
||||
### 方法2:直接运行Python文件
|
||||
|
||||
```bash
|
||||
python server.py
|
||||
```
|
||||
|
||||
服务将在 `http://localhost:8000` 启动。
|
||||
|
||||
## API接口
|
||||
|
||||
### 聊天完成接口
|
||||
|
||||
**端点**: `POST /v1/chat/completions`
|
||||
|
||||
**请求格式**:
|
||||
```json
|
||||
{
|
||||
"model": "qwen-flash",
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "你是一个有用的助手。"
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "你好,请介绍一下你自己。"
|
||||
}
|
||||
],
|
||||
"temperature": 0.7,
|
||||
"max_tokens": 1000,
|
||||
"stream": false,
|
||||
"thread_id": 3
|
||||
}
|
||||
```
|
||||
|
||||
**响应格式**:
|
||||
```json
|
||||
{
|
||||
"id": "chatcmpl-abc123",
|
||||
"object": "chat.completion",
|
||||
"created": 1677652288,
|
||||
"model": "qwen-flash",
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": "你好!我是小盏,是半盏青年茶馆的智能助手..."
|
||||
},
|
||||
"finish_reason": "stop"
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
### API信息接口
|
||||
|
||||
**端点**: `GET /`
|
||||
|
||||
返回API的基本信息。
|
||||
|
||||
### 健康检查接口
|
||||
|
||||
**端点**: `GET /health`
|
||||
|
||||
返回服务的健康状态。
|
||||
|
||||
## 使用示例
|
||||
|
||||
### 使用OpenAI Python客户端库
|
||||
|
||||
首先安装OpenAI库:
|
||||
|
||||
```bash
|
||||
pip install openai
|
||||
```
|
||||
|
||||
然后使用以下代码:
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
# 设置API基础URL和API密钥(这里使用一个虚拟的密钥,因为我们没有实现认证)
|
||||
client = OpenAI(
|
||||
api_key="your-api-key", # 这里可以使用任意值,因为我们的API没有实现认证
|
||||
base_url="http://localhost:8000/v1"
|
||||
)
|
||||
|
||||
# 发送聊天请求
|
||||
response = client.chat.completions.create(
|
||||
model="qwen-flash",
|
||||
messages=[
|
||||
{"role": "system", "content": "你是一个有用的助手。"},
|
||||
{"role": "user", "content": "你好,请介绍一下你自己。"}
|
||||
],
|
||||
temperature=0.7,
|
||||
thread_id=1 # 用于多轮对话
|
||||
)
|
||||
|
||||
print(response.choices[0].message.content)
|
||||
```
|
||||
|
||||
### 使用curl
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:8000/v1/chat/completions" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "qwen-flash",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "你好,请介绍一下你自己。"
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
### 使用Python requests
|
||||
|
||||
```python
|
||||
import requests
|
||||
|
||||
url = "http://localhost:8000/v1/chat/completions"
|
||||
headers = {"Content-Type": "application/json"}
|
||||
data = {
|
||||
"model": "qwen-flash",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "你好,请介绍一下你自己。"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
response = requests.post(url, headers=headers, json=data)
|
||||
print(response.json())
|
||||
```
|
||||
|
||||
## 注意事项
|
||||
|
||||
1. 确保已设置正确的API密钥环境变量
|
||||
2. 默认使用qwen-flash模型,可以通过修改代码中的配置来更改模型
|
||||
3. thread_id用于多轮对话,相同的thread_id会保持对话上下文
|
||||
4. 目前stream参数设置为true时,仍会返回非流式响应(可根据需要进一步实现)
|
||||
18
fastapi_server/docker-compose.api.yml
Normal file
18
fastapi_server/docker-compose.api.yml
Normal file
@@ -0,0 +1,18 @@
|
||||
version: '3.8'
|
||||
|
||||
services:
|
||||
lang-agent-api:
|
||||
build:
|
||||
context: .
|
||||
dockerfile: Dockerfile.api
|
||||
ports:
|
||||
- "8488:8488"
|
||||
environment:
|
||||
- PYTHONUNBUFFERED=1
|
||||
restart: unless-stopped
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://localhost:8488/health"]
|
||||
interval: 30s
|
||||
timeout: 10s
|
||||
retries: 3
|
||||
start_period: 40s
|
||||
129
fastapi_server/openai_client_example.py
Normal file
129
fastapi_server/openai_client_example.py
Normal file
@@ -0,0 +1,129 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
使用OpenAI Python客户端库调用我们的FastAPI聊天API的示例
|
||||
"""
|
||||
|
||||
from openai import OpenAI
|
||||
import os
|
||||
|
||||
# 设置API基础URL和API密钥(这里使用一个虚拟的密钥,因为我们没有实现认证)
|
||||
client = OpenAI(
|
||||
api_key="your-api-key", # 这里可以使用任意值,因为我们的API没有实现认证
|
||||
base_url="http://localhost:8000/v1"
|
||||
)
|
||||
|
||||
def simple_chat():
|
||||
"""简单的聊天示例"""
|
||||
print("=" * 50)
|
||||
print("简单聊天示例")
|
||||
print("=" * 50)
|
||||
|
||||
response = client.chat.completions.create(
|
||||
model="qwen-flash",
|
||||
messages=[
|
||||
{"role": "user", "content": "你好,请介绍一下你自己。"}
|
||||
],
|
||||
temperature=0.7,
|
||||
thread_id=1
|
||||
)
|
||||
|
||||
print(f"助手回复: {response.choices[0].message.content}")
|
||||
print("\n")
|
||||
|
||||
def multi_turn_chat():
|
||||
"""多轮对话示例"""
|
||||
print("=" * 50)
|
||||
print("多轮对话示例")
|
||||
print("=" * 50)
|
||||
|
||||
# 第一轮对话
|
||||
print("第一轮对话:")
|
||||
response1 = client.chat.completions.create(
|
||||
model="qwen-flash",
|
||||
messages=[
|
||||
{"role": "user", "content": "你推荐什么茶?"}
|
||||
],
|
||||
temperature=0.7,
|
||||
thread_id=2
|
||||
)
|
||||
|
||||
print(f"用户: 你推荐什么茶?")
|
||||
print(f"助手: {response1.choices[0].message.content}")
|
||||
|
||||
# 第二轮对话,使用相同的thread_id
|
||||
print("\n第二轮对话:")
|
||||
response2 = client.chat.completions.create(
|
||||
model="qwen-flash",
|
||||
messages=[
|
||||
{"role": "user", "content": "为什么推荐这个茶?"}
|
||||
],
|
||||
temperature=0.7,
|
||||
thread_id=2 # 使用相同的thread_id
|
||||
)
|
||||
|
||||
print(f"用户: 为什么推荐这个茶?")
|
||||
print(f"助手: {response2.choices[0].message.content}")
|
||||
print("\n")
|
||||
|
||||
def system_prompt_example():
|
||||
"""使用系统提示的示例"""
|
||||
print("=" * 50)
|
||||
print("系统提示示例")
|
||||
print("=" * 50)
|
||||
|
||||
response = client.chat.completions.create(
|
||||
model="qwen-flash",
|
||||
messages=[
|
||||
{"role": "system", "content": "你是一个专业的茶艺师,用简洁的语言回答问题,不超过50字。"},
|
||||
{"role": "user", "content": "请介绍一下普洱茶。"}
|
||||
],
|
||||
temperature=0.3,
|
||||
thread_id=3
|
||||
)
|
||||
|
||||
print(f"用户: 请介绍一下普洱茶。")
|
||||
print(f"助手: {response.choices[0].message.content}")
|
||||
print("\n")
|
||||
|
||||
def interactive_chat():
|
||||
"""交互式聊天示例"""
|
||||
print("=" * 50)
|
||||
print("交互式聊天 (输入'quit'退出)")
|
||||
print("=" * 50)
|
||||
|
||||
thread_id = 4 # 为这个会话分配一个固定的thread_id
|
||||
|
||||
while True:
|
||||
user_input = input("你: ")
|
||||
if user_input.lower() == 'quit':
|
||||
break
|
||||
|
||||
try:
|
||||
response = client.chat.completions.create(
|
||||
model="qwen-flash",
|
||||
messages=[
|
||||
{"role": "user", "content": user_input}
|
||||
],
|
||||
temperature=0.7,
|
||||
thread_id=thread_id
|
||||
)
|
||||
|
||||
print(f"助手: {response.choices[0].message.content}")
|
||||
except Exception as e:
|
||||
print(f"错误: {str(e)}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
print("使用OpenAI客户端库调用FastAPI聊天API示例")
|
||||
print("注意: 确保服务器在 http://localhost:8000 上运行\n")
|
||||
|
||||
# 简单聊天示例
|
||||
simple_chat()
|
||||
|
||||
# 多轮对话示例
|
||||
multi_turn_chat()
|
||||
|
||||
# 系统提示示例
|
||||
system_prompt_example()
|
||||
|
||||
# 交互式聊天示例
|
||||
interactive_chat()
|
||||
24
fastapi_server/requirements.txt
Normal file
24
fastapi_server/requirements.txt
Normal file
@@ -0,0 +1,24 @@
|
||||
fastapi>=0.104.0
|
||||
uvicorn>=0.24.0
|
||||
pydantic>=2.0.0,<2.12
|
||||
loguru>=0.7.0
|
||||
python-dotenv>=1.0.0
|
||||
langchain==1.0
|
||||
langchain-core>=0.1.0
|
||||
langchain-community
|
||||
langchain-openai
|
||||
langchain-mcp-adapters
|
||||
langgraph>=0.0.40
|
||||
tyro>=0.7.0
|
||||
commentjson>=0.9.0
|
||||
matplotlib>=3.7.0
|
||||
Pillow>=10.0.0
|
||||
jax>=0.4.0
|
||||
httpx[socks]
|
||||
dashscope
|
||||
websockets>=11.0.3
|
||||
mcp>=1.8.1
|
||||
mcp-proxy>=0.8.2
|
||||
faiss-cpu
|
||||
fastmcp
|
||||
pandas
|
||||
163
fastapi_server/server.py
Normal file
163
fastapi_server/server.py
Normal file
@@ -0,0 +1,163 @@
|
||||
from fastapi import FastAPI, HTTPException, Depends, Security
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import List, Optional, Dict, Any, Union
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import uvicorn
|
||||
from loguru import logger
|
||||
|
||||
# 添加父目录到系统路径,以便导入lang_agent模块
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
|
||||
from lang_agent.pipeline import Pipeline, PipelineConfig
|
||||
|
||||
# 定义OpenAI格式的请求模型
|
||||
class ChatMessage(BaseModel):
|
||||
role: str = Field(..., description="消息角色,可以是 'system', 'user', 'assistant'")
|
||||
content: str = Field(..., description="消息内容")
|
||||
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
model: str = Field(default="qwen-flash", description="模型名称")
|
||||
messages: List[ChatMessage] = Field(..., description="对话消息列表")
|
||||
temperature: Optional[float] = Field(default=0.7, description="采样温度")
|
||||
max_tokens: Optional[int] = Field(default=500, description="最大生成token数")
|
||||
stream: Optional[bool] = Field(default=False, description="是否流式返回")
|
||||
thread_id: Optional[int] = Field(default=3, description="线程ID,用于多轮对话")
|
||||
|
||||
class ChatCompletionResponseChoice(BaseModel):
|
||||
index: int
|
||||
message: ChatMessage
|
||||
finish_reason: str
|
||||
|
||||
class ChatCompletionResponseUsage(BaseModel):
|
||||
prompt_tokens: int
|
||||
completion_tokens: int
|
||||
total_tokens: int
|
||||
|
||||
class ChatCompletionResponse(BaseModel):
|
||||
id: str
|
||||
object: str = "chat.completion"
|
||||
created: int
|
||||
model: str
|
||||
choices: List[ChatCompletionResponseChoice]
|
||||
usage: Optional[ChatCompletionResponseUsage] = None
|
||||
|
||||
# 初始化FastAPI应用
|
||||
app = FastAPI(title="Lang Agent Chat API", description="使用OpenAI格式调用pipeline.invoke的聊天API")
|
||||
|
||||
# 设置API密钥
|
||||
API_KEY = "123tangledup-ai"
|
||||
|
||||
# 创建安全方案
|
||||
security = HTTPBearer()
|
||||
|
||||
# 验证API密钥的依赖项
|
||||
async def verify_api_key(credentials: HTTPAuthorizationCredentials = Security(security)):
|
||||
if credentials.credentials != API_KEY:
|
||||
raise HTTPException(
|
||||
status_code=401,
|
||||
detail="无效的API密钥",
|
||||
headers={"WWW-Authenticate": "Bearer"},
|
||||
)
|
||||
return credentials
|
||||
|
||||
# 添加CORS中间件
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
# 初始化Pipeline
|
||||
pipeline_config = PipelineConfig()
|
||||
pipeline_config.llm_name = "qwen-flash"
|
||||
pipeline_config.llm_provider = "openai"
|
||||
pipeline_config.base_url = "https://dashscope.aliyuncs.com/compatible-mode/v1"
|
||||
|
||||
pipeline = Pipeline(pipeline_config)
|
||||
|
||||
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
||||
async def chat_completions(
|
||||
request: ChatCompletionRequest,
|
||||
credentials: HTTPAuthorizationCredentials = Depends(verify_api_key)
|
||||
):
|
||||
"""
|
||||
使用OpenAI格式的聊天完成API
|
||||
"""
|
||||
try:
|
||||
# 提取用户消息
|
||||
user_message = None
|
||||
system_message = None
|
||||
|
||||
for message in request.messages:
|
||||
if message.role == "user":
|
||||
user_message = message.content
|
||||
elif message.role == "system":
|
||||
system_message = message.content
|
||||
|
||||
if not user_message:
|
||||
raise HTTPException(status_code=400, detail="缺少用户消息")
|
||||
|
||||
# 调用pipeline的chat方法
|
||||
response_content = pipeline.chat(
|
||||
inp=user_message,
|
||||
as_stream=request.stream,
|
||||
thread_id=request.thread_id
|
||||
)
|
||||
|
||||
# 构建响应
|
||||
response = ChatCompletionResponse(
|
||||
id=f"chatcmpl-{os.urandom(12).hex()}",
|
||||
created=int(time.time()),
|
||||
model=request.model,
|
||||
choices=[
|
||||
ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response_content),
|
||||
finish_reason="stop"
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"处理聊天请求时出错: {str(e)}")
|
||||
raise HTTPException(status_code=500, detail=f"内部服务器错误: {str(e)}")
|
||||
|
||||
@app.get("/")
|
||||
async def root():
|
||||
"""
|
||||
根路径,返回API信息
|
||||
"""
|
||||
return {
|
||||
"message": "Lang Agent Chat API",
|
||||
"version": "1.0.0",
|
||||
"description": "使用OpenAI格式调用pipeline.invoke的聊天API",
|
||||
"authentication": "Bearer Token (API Key)",
|
||||
"endpoints": {
|
||||
"/v1/chat/completions": "POST - 聊天完成接口,兼容OpenAI格式,需要API密钥验证",
|
||||
"/": "GET - API信息",
|
||||
"/health": "GET - 健康检查接口"
|
||||
}
|
||||
}
|
||||
|
||||
@app.get("/health")
|
||||
async def health_check():
|
||||
"""
|
||||
健康检查接口
|
||||
"""
|
||||
return {"status": "healthy"}
|
||||
|
||||
if __name__ == "__main__":
|
||||
uvicorn.run(
|
||||
"server:app",
|
||||
host="0.0.0.0",
|
||||
port=8488,
|
||||
reload=True
|
||||
)
|
||||
19
fastapi_server/start_server.sh
Executable file
19
fastapi_server/start_server.sh
Executable file
@@ -0,0 +1,19 @@
|
||||
#!/bin/bash
|
||||
|
||||
echo "启动Lang Agent Chat API服务器..."
|
||||
|
||||
# 检查Python环境
|
||||
if ! command -v python &> /dev/null; then
|
||||
echo "错误: 未找到Python。请确保Python已安装并添加到PATH中。"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# 检查环境变量
|
||||
if [ -z "$ALI_API_KEY" ]; then
|
||||
echo "警告: 未设置ALI_API_KEY环境变量。请确保已设置此变量。"
|
||||
echo "例如: export ALI_API_KEY='your_api_key'"
|
||||
fi
|
||||
|
||||
# 启动服务器
|
||||
cd "$(dirname "$0")"
|
||||
python server.py
|
||||
@@ -21,8 +21,21 @@ class SimpleRagConfig(ToolConfig, KeyConfig):
|
||||
model_name:str = "text-embedding-v4"
|
||||
"""embedding model name"""
|
||||
|
||||
folder_path:str = "/home/smith/projects/work/langchain-agent/assets/xiaozhan_emb"
|
||||
"""path to local database"""
|
||||
folder_path:str = "/Users/jeremygan/Desktop/TangledupAI/lang-agent/assets/xiaozhan_emb"
|
||||
"""path to docker database"""
|
||||
|
||||
# @property
|
||||
# def folder_path(self) -> str:
|
||||
# """Dynamically determine the folder path for the vector store"""
|
||||
# # Check if environment variable is set
|
||||
# env_path = os.environ.get("RAG_FOLDER_PATH")
|
||||
# if env_path:
|
||||
# return env_path
|
||||
|
||||
# # Default to relative path from current working directory
|
||||
# return os.path.join(os.getcwd(), "assets", "xiaozhan_emb")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -31,8 +44,19 @@ class SimpleRag(LangToolBase):
|
||||
self.config = config
|
||||
self.emb = QwenEmbeddings(self.config.api_key,
|
||||
self.config.model_name)
|
||||
|
||||
# Determine the folder path dynamically
|
||||
# folder_path = os.environ.get("RAG_FOLDER_PATH")
|
||||
# if not folder_path:
|
||||
# # Default to relative path from current working directory
|
||||
# folder_path = os.path.join(os.getcwd(), "assets", "xiaozhan_emb")
|
||||
|
||||
# logger.info(f"Loading FAISS index from: {folder_path}")
|
||||
|
||||
folder_path = "/Users/jeremygan/Desktop/TangledupAI/lang-agent/assets/xiaozhan_emb"
|
||||
|
||||
self.vec_store = FAISS.load_local(
|
||||
folder_path=self.config.folder_path,
|
||||
folder_path=folder_path,
|
||||
embeddings=self.emb,
|
||||
allow_dangerous_deserialization=True # Required for LangChain >= 0.1.1
|
||||
)
|
||||
|
||||
0
lang_agent/test.py
Normal file
0
lang_agent/test.py
Normal file
@@ -6,14 +6,14 @@ import inspect
|
||||
import asyncio
|
||||
import os.path as osp
|
||||
from loguru import logger
|
||||
from fastmcp.tools.tool import FunctionTool
|
||||
from fastmcp.tools.tool import Tool
|
||||
|
||||
from lang_agent.config import InstantiateConfig, ToolConfig
|
||||
from lang_agent.base import LangToolBase
|
||||
|
||||
from lang_agent.rag.simple import SimpleRagConfig
|
||||
from lang_agent.dummy.calculator import CalculatorConfig
|
||||
from catering_end.lang_tool import CartToolConfig, CartTool
|
||||
# from catering_end.lang_tool import CartToolConfig, CartTool
|
||||
|
||||
from langchain_core.tools.structured import StructuredTool
|
||||
import jax
|
||||
@@ -26,7 +26,7 @@ class ToolManagerConfig(InstantiateConfig):
|
||||
# tool configs here; MUST HAVE 'config' in name and must be dataclass
|
||||
rag_config: SimpleRagConfig = field(default_factory=SimpleRagConfig)
|
||||
|
||||
cart_config: CartToolConfig = field(default_factory=CartToolConfig)
|
||||
# cart_config: CartToolConfig = field(default_factory=CartToolConfig)
|
||||
|
||||
calc_config: CalculatorConfig = field(default_factory=CalculatorConfig)
|
||||
|
||||
@@ -78,7 +78,7 @@ class ToolManager:
|
||||
def _get_tool_fnc(self, tool_obj:LangToolBase)->List:
|
||||
fnc_list = []
|
||||
for fnc in tool_obj.get_tool_fnc():
|
||||
if isinstance(fnc, FunctionTool):
|
||||
if isinstance(fnc, Tool):
|
||||
fnc = fnc.fn
|
||||
fnc_list.append(fnc)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user